

PHYSICS/ASTRONOMY BLDG. RM C411 • BOX 351550 UNIVERSITY OF WASHINGTON • SEATTLE, WA 98195-1550 • USA

www.int.washington.edu • 206-685-3360

Stephan Stetina

Institute for Theoretical Physics Vienna UT

FULF Der Wissenschaftsfonds.

Transport in the Outer Core of Neutron Stars

CSQCD 2018, CUNY, New York

Ermal Rrapaj (University of Guelph), Sanjay Reddy (INT Seattle)

[S. Stetina, E. Rrapaj, S. Reddy, Phys.Rev. C97 (2018) no.4, 045801] [S. Stetina, in preparation]

Phenomenological relevance

→ electrons under NS conditions are relativistic, degenerate, weakly interacting
 → important contribution to transport

The outer core of neutron stars

homogeneous plasma of electrons, muons, protons, and neutrons

stable homogeneous nuclear matter

 \rightarrow ß equilibrium and charge neutrality

 $\mu_n-\mu_p=~\mu_e=\mu_\mu$, $~~n_e+n_\mu=n_p$

- → degenerate QED plasma of electrons, muons and protons
- → protons and neutrons form strongly interacting Fermi liquid

critical densities

- → lower critical density (spinodal point) $n_c \sim 0.7 n_0$
- → onset of muons ($\mu_e = m_\mu$) $n_\mu \sim 0.75 n_0 - 0.8 n_0$

Strongly interacting Fermi Liquid (I)

Landau energy functional:

[N. Chamel, P. Haensel, PRC.73, 045802]

$$E[n, \mathbf{j}] = \sum_{T=0,1} \delta_{T0} \frac{\hbar^2}{2m} \tau_T + C_T^n \{n_b\} n_T^2 + C_T^\tau n_T \tau_T + C_T^{\mathbf{j}} \mathbf{j}_T^2$$

Functional dependence on nucleon density n, kinetic energy density τ , and current density j

$$V_{ab} = \frac{\delta^2}{\delta n_a \delta n_b} E[n, \mathbf{j}] , \qquad (V_{ab})_{ij} = \left(\frac{\delta^2}{\delta \mathbf{j}_{a,i} \delta \mathbf{j}_{b,j}}\right) E[n, \mathbf{j}]$$

Current-Current interaction are related to effective masses (L=1 Landau parameter) $C^{ au} = -C^{m j}$

$$\frac{\hbar^2}{2m_a^*} = \frac{\delta E}{\delta \tau_a} = \frac{\hbar^2}{2m_a} + (C_0^{\tau} - C_1^{\tau})n + 2C_1^{\tau}n_a$$

 $C_{0,1}^{n,\tau,j}$ related to Skyrme parameters. Here: NRAPR, SKRA, SQMC700, LNS, KDE0v1 [M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone, P. D. Stevenson , PRC 85 ,035201]

ightarrow matching to relativistic field theory variables required

Strongly interacting Fermi Liquid (II)

From field theory to transport

consider simplest case: single fermion species interacting electromagnetically (QED)

in terms of entropy production rate $\mathbf{S}' \propto \int d^3 \boldsymbol{p} \operatorname{Im} \Sigma (\mathbf{p}_0, \mathbf{p})$

 $\kappa^{-1} = T^2 \mathbf{S'} / j_H^2$ $\sigma^{-1} = T \mathbf{S'} / j_E^2$ $\eta^{-1} = 2T \mathbf{S'} / (\Pi_{ij})^2$

Part I: Photon Spectrum in Dense Nuclear Matter

Photon spectrum (I): RPA

Relativistic one-loop resummation ("Random Phase Approximation", RPA)

 $\widetilde{D}^{\mu\nu}(q) - D^{\mu\nu}(q) = \Pi^{\mu\nu}(q)$

• Dressed photon propagator in *Coulomb Gauge*:

$$\widetilde{D}^{\mu\nu}(q_0,q) = \frac{q^2}{q^2}(q^2 - \Pi_L)^{-1} P_L^{\mu\nu} + (q^2 - \Pi_\perp)^{-1} P_\perp^{\mu\nu}$$

• hard region: $q = (q_0, q) \sim k_f$ soft region (medium effects): $q \sim e k_f$

→ Weak screening approximation:

$$D_L \propto \frac{1}{q^2 - m_D^2}$$
, $D_\perp \propto \frac{1}{q^2 - i\left(\frac{q_0}{|q|}\right)q_f^2}$, $m_D^2 = \frac{4\alpha_f}{\pi}\mu k_f$, $q_f^2 = \alpha_f k_f^2$

Extensively used in the calculation of transport in NS:

[E. Flowers and N. Itoh, Astrophys. J.206, 218 (1976)]

[P.S. Shternin, D.G. Yakovlev Phys.Rev.D78 (2008), 063006][P.S. Shternin, D.G. Yakovlev Phys.Rev.D75 (2007), 103004]

 \rightarrow Hard dense loop (HDL) approximation $q \ll k_f$ (requires m $\ll k_f$)

Photon spectrum (II): damping $\Gamma_{L,\perp} \propto Im \Pi_{L,\perp}$

Regions where pair creation (PC) and Landau damping (LD, i.e., p-h creation) operate:

 $\mu = 0 \text{ (left)}:$ $q_0 = |\mathbf{q}| \qquad (LD)$ $q_0 = \sqrt{|\mathbf{q}|^2 + 4 m^2} \text{ (PC)}$ (right: **dotted**)

 $\begin{array}{|c|c|c|c|c|} \hline degenerate matter (right) : \\ q_0 = -\mu + \sqrt{\mu^2 + |\boldsymbol{q}|^2 \pm 2k_f |\boldsymbol{q}|} & (\text{LD, solid}) \\ \hline q_0 = +\mu + \sqrt{\mu^2 + |\boldsymbol{q}|^2 - 2k_f |\boldsymbol{q}|} & (\text{PC, } |\boldsymbol{q}| > 2k_f, \text{ dashed}) \end{array}$

Photon spectrum (III): real parts (full vs HDL)

at $\mathbf{n} = \mathbf{n_0}$: $\mu_e \sim 120 \text{ MeV}$ $\mu_p^* \sim 600 \text{ MeV}$ $m_p^* \sim 575 \text{ MeV}$ $|\boldsymbol{q}| \sim 0.2 \mu$

collective modes

collective modes (poles of the resummed propagator)

"plasma frequency": $\omega_0^2 = \frac{e^2}{3\pi^2} \frac{k_f^3}{\mu} = \frac{1}{3} v_f^2 m_D^2$ slop

slope of overdamped mode: $c \sim 0.83$,

collective modes: longitudinal damping

damping of modes

HDL results: $(q_0, \boldsymbol{q}) \ll k_f, \mu$

explains "thumb-like" shape of poles

$$Tm \Pi_L = -\frac{\pi}{2} m_D^2 \frac{\mu}{k_f} \frac{q_0}{|\boldsymbol{q}|} \Theta(\mathbf{v}_f |\boldsymbol{q}| - \mathbf{q}_0)$$

[L. McOrist, D.B. Melrose, J.I. Weise, arXiv: 0603227v1 [plasma-ph]]

[M. Baldo, C. Ducoin, PRC 79, 035801 (2009)]

Photon spectrum: multi-component QED

Generalize to internal "flavour" space $(i \rightarrow e^-, \mu^-, p^+)$

 $\Pi \rightarrow \text{diag} (\Pi_e, \Pi_\mu, \Pi_p) , \qquad \gamma^\mu \rightarrow c^i \gamma^\mu , \qquad c^i = (1, 1, -1)$

dressed photon propagator:

$$= \cdots + \cdots = \sum_{i=e, \mu, p} \prod_{i} \bullet \cdots \bullet$$

$$\widetilde{D}^{\mu\nu}(q_0,q) = \frac{q^2}{q^2} (q^2 - Tr [\Pi_L])^{-1} P_L^{\mu\nu} + (q^2 - Tr [\Pi_L])^{-1} P_L^{\mu\nu}$$

- **Protons are quasiparticles** (strongly interacting Fermi liquid) with effective masses m_p^*
- Collective modes are oscillation in the densities of these quasiparticles

RPA resummation in multi-component plasma is well established:

[C. Horowitz, K. Wehrberger, Nucl. Phys. A 531, 665 (1991)]

[S. Reddy, M. Prakash, J.M. Lattimer, J.A. Pons, PRC 59, 2888 (1999)]

Collective modes: multi-component QED

Spectrum (electrons, muons, protons)

- Three damped solutions (e, m, p) $\omega_{<,e}$, $\omega_{<,\mu}$, $\omega_{<,p}$
- Two Bohm-Staver sound modes (m, p)
 [D. Bohm, T. Staver , Phys. Rev. 84, 836 (1950)]

 u_μ , u_p

- One gapped (real) plasmon mode (e) ω_L
- transverse mode

 ω_{\perp}

→ Light particles dynamically screen heavier ones.

Spectral functions: multi-component case

QED + strong interactions

What's the role of the neutrons within RPA?

$$\widetilde{D}^{\mu\nu}(q_0,q) = \frac{q^2}{q^2} \left(q^2 - \Pi_{e,L} - \Pi_{\mu,L} - \widetilde{\Pi}_{p,L} \right)^{-1} P_L^{\mu\nu} + \left(q^2 - \Pi_{e,\perp} - \Pi_{\mu,\perp} - \widetilde{\Pi}_{p,\perp} \right)^{-1} P_{\perp}^{\mu\nu}$$

- Quasiparticle properties and interaction potentials V_{ij} obtained from Landau energy functional based on Skyrme type interactions [N. Chamel, P. Haensel, PRC.73, 045802]

"Induced" interactions

Nuclear interactions appear "nested" inside electromagnetic ones

$$= \cdots + O(\alpha_t^2)$$

$$= \cdots + O(\alpha_t^2)$$

$$+ (p + p) + (p + p) + (p + p) + \cdots + O(\alpha_t^2)$$

 V_{ab} are described by pointlike short-range interactions:

density-density (I=0) current-current (I=1)

"induced" (strong) screening

ightarrow induced interactions most pronounced at densities close to the crust-core boundary

qualitative impact very robust, present in any Skyrme parameter set tested

 \rightarrow changes to transverse spectrum are negligible since for protons $\Pi_{\perp} \ll \Pi_L$.

$$L_{\gamma-n} = e^2 V_{np} \left(\bar{n} \gamma_{\mu} n \right) A_{\nu} \left(\prod_{L,p} P_L^{\mu\nu} + \prod_{\perp,p} P_{\perp}^{\mu\nu} \right)$$

Collective modes: QED + strong int.

compare to: [M. Baldo, C. Ducoin, PRC 79, 035801 (2009)]

Spectral functions: QED + strong int.

compare to: [M. Baldo, C. Ducoin, PRC 79, 035801 (2009)]

Part II: Electron (Muon) Damping in Dense Nuclear Matter

Scattering rates of fermions

fermion ($|\pmb{p}| > k_f$) and hole ($|\pmb{p}| < k_f$) dispersion relations in degenerate matter

soft fermionic excitations include

 Λ^+ : particles (or holes), anti-plasmino

- Λ^- : anti-particle, plasmino
- → soft fermion spectrum more involved (mode mixing, non-perturbative effects)
 [J. P. Blaizot, J.Y. Ollitrault, PRD 48, 3 1993]
 [S. Stetina, in preparation]

$$S(p) = \begin{bmatrix} S_+ \Lambda_{+,p} + S_- \Lambda_{-,p} \end{bmatrix} \gamma_0 \qquad S_{\pm} = \begin{bmatrix} p_0 \mp (\epsilon_p - \Sigma_{\pm}) \end{bmatrix}^{-1} \qquad \Lambda^{\pm} = \frac{1}{2} \begin{bmatrix} 1 + \gamma_0 \ \frac{\gamma \cdot p + m}{\epsilon_p} \end{bmatrix}$$

scattering close to the Fermi surface:

 \rightarrow fermions $p \sim k_f$ are always on-shell and undamped at order α_f

→ photon is either hard (large angle) or soft (small) angel

damping rate of fermion, single species

optical theorem

$$\Gamma_{+} = \frac{1}{2} Tr \left[\Lambda_{+} \gamma_{0} \operatorname{Im} \Sigma_{R}\right] = -\frac{1}{2p_{0}} Tr \left[(\gamma \cdot p + m) \operatorname{Im} \Sigma_{R} \left(p_{0}, \boldsymbol{p}\right)\right], \qquad p_{0} = \epsilon_{p}$$

$$photon spectrum \qquad \rho^{\mu\nu} = \rho_{L} g^{\mu0} g^{\nu0} + \rho_{\perp} P_{\perp}^{\mu\nu}$$

ightarrow week screening & close to Fermi surface $\epsilon_{m p} - \mu \ll m_D$, $u = q_0 \,/\, |m q|$

$$\Gamma_{L} \simeq \frac{e^{2}}{4\pi} \frac{m_{D}^{2}}{v_{f}^{2}} \int_{0}^{|\epsilon_{p}-\mu|} du \, u \, \int_{0}^{\infty} d|\mathbf{q}| \frac{1}{(m_{D}^{2}+\mathbf{q}^{2})^{2}} = \frac{e^{2}}{32} \frac{1}{m_{D}} \frac{1}{v_{f}^{2}} \left(\epsilon_{p}-\mu\right)^{2}$$

$$\Gamma_{\perp} \simeq \frac{e^{2}}{4\pi} m_{D}^{2} v_{f}^{2} \int_{0}^{|\epsilon_{p}-\mu|} du \, u \, \int_{0}^{\infty} d|\mathbf{q}| \, |\mathbf{q}| \frac{4 \, \mathbf{q}^{2}}{16 \, \mathbf{q}^{6}+\mathbf{u}^{2} \, \pi^{2} m_{D}^{2} \, v_{f}^{2}} = \frac{e^{2}}{12\pi} \frac{v_{f}|\epsilon_{p}-\mu|}{12\pi} \int_{0}^{\infty} d|\mathbf{q}| \, |\mathbf{q}| \frac{1}{16 \, \mathbf{q}^{6}+\mathbf{u}^{2} \, \pi^{2} m_{D}^{2} \, v_{f}^{2}} = \frac{e^{2}}{12\pi} \frac{1}{12\pi} \frac{1}{12\pi} \left(\epsilon_{p}-\mu\right)^{2}$$

compare to: [C. Manuel, Phys.Rev. D62 (2000) 076009]

longitudinal and transverse damping

- → nonrelativistic: electric interactions dominate, magnetic interactions are down by $\left(\frac{v}{c}\right)^2$
- → relativistic: damping due to the exchange of plasmons and photons is equally important [H. Heiselberg, G. Baym, C. J. Pethick, J. Popp, Nuc. Phys. A 544 (1992)]

electrons at n=n0

 \rightarrow HDL approximations work much better in the longitudinal channel!

longitudinal and transverse damping

- → nonrelativistic: electric interactions dominate, magnetic interactions are down by $\left(\frac{v}{c}\right)^2$
- → relativistic: damping due to the exchange of plasmons and photons is equally important [H. Heiselberg, G. Baym, C. J. Pethick, J. Popp, Nuc. Phys. A 544 (1992)]

<u>muons at n=n0</u>

- $\Rightarrow |q| \ll k_f$ hard to fulfill, HDL don't work really well in either channel
- $\rightarrow \Gamma_L$ overtakes Γ_\perp

damping rate of fermion, multiple species

energy loss of electrons due to collisions with other electrons, muons, and protons

impact of induced interactions

Outlook: transport (small energies q₀)

- Dynamical screening is important for the transverse damping rates
- Induced interactions are important for the longitudinal rates

Where to go from here:

Refine existing calculations of transport coefficients in neutron star cores.

[work in progress: E. Rrapaj, S. Reddy, S. Stetina]

- Improve the implementation of nuclear interaction potentials.
- if protons are superconducting: Meissner effect for (transverse) photon
 → induced scattering dominates
 [B. Bertoni, S. Reddy, E. Rrapaj, Phys. Rev. C 91, 025806 (2015)]

Outlook (II): high energy spectrum, dark matter ?

• beyond one-loop (RPA): what happens in diss. free region?

Thank you!

