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Symmetries of the three flavor massless QCD Lagrangian

color gauge 
group

global chiral 
symmetry

global baryonic 
number

SU(3)c ⇥ SU(3)L ⇥ SU(3)R| {z }
� [U(1)e.m.]

⇥U(1)B

Symmetries of QCD

h C�5 i

h ̄ i

h ̄�2�5 i

Chiral condensate: Locks chiral rotations

Diquark condensate: Breaks the gauge group and may lock chiral rotations

The ground state may have a lower symmetry because of quark condensates

Pion condensate: Locks chiral rotations and breaks U(1)e.m.
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Fight of condensates 
Different kind of pairings

quark-antiquark quark-hole
(exciton-like)

quark-hole
(CDW)

quark-quark
color superconductor

Not obvious which of these is energetically favored

T. Kojo, Y. Hidaka, L. McLerran, R. D. Pisarski, Nucl. 
Phys. A 843 (2010) 37



Fight of condensates 
Different kind of pairings

quark-antiquark quark-hole
(exciton-like)

quark-hole
(CDW)

quark-quark
color superconductor

Not obvious which of these is energetically favored

Unfortunately it seems that the favored condensate is somehow model dependent.
The appearance of inhomogeneous phases makes the picture even more complicated

T. Kojo, Y. Hidaka, L. McLerran, R. D. Pisarski, Nucl. 
Phys. A 843 (2010) 37



Melting the chiral condensate 
The chiral condensate becomes disfavored with increasing density 

It can melt in different ways:
1) By a second order phase transition
2) By a first order phase transition
3) Passing through an inhomogeneous phase



Melting the chiral condensate 
The chiral condensate becomes disfavored with increasing density 

It can melt in different ways:
1) By a second order phase transition
2) By a first order phase transition
3) Passing through an inhomogeneous phase

NJL-model analysis
CDW ansatz

variational
parameters

M(z) = �e2iqz
Pauli-Villars regulator Λ = 757.048 MeV
Coupling constant G = 6/Λ2



Melting the chiral condensate 
The chiral condensate becomes disfavored with increasing density 

It can melt in different ways:
1) By a second order phase transition
2) By a first order phase transition
3) Passing through an inhomogeneous phase

Buballa and  Carignano
Prog.Part.Nucl.Phys. 81 (2015) 39-96

color
 superconductor

homogeneous
�SB

inhomogeneous
�SB

Lifshitz point

NJL-model analysis
CDW ansatz

variational
parameters

M(z) = �e2iqz
Pauli-Villars regulator Λ = 757.048 MeV
Coupling constant G = 6/Λ2
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But is not in general true.
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Standard GL expansion

Reasoning: terms with the same αn are  equally important. 
This is correct close to the Lifshitz point where both M and  łM  are small. 
But is not in general true.

What is the “correct expansion” away from the Lifshitz point? 
How to compute the relevant terms?
Which are the characteristic scales of fluctuations?
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The αn coefficients are “universal”, for the considered system.

They shoul be derived from the microscopic theory.  Since in this regime QCD is non 
perturbative, they depend on the effective model we use. 

Even within the NJL model they are not easy to compute. Brute force is not very rewarding. 
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Idea: scale separation between slow and fast fluctuations + use a simple model to compute some 
of the coefficients.

Improved GL expansion (for chiral symmetry breaking)

Long wavelengths: dominant at the onset of the inhomogeneous phase 
Short wavelengths: dominant at the transition to the normal phase. 
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Idea: scale separation between slow and fast fluctuations + use a simple model to compute some 
of the coefficients.

Improved GL expansion (for chiral symmetry breaking)

Captures short-wavelength oscillations 
by larger number of gradients.

Captures long-wavelength oscillations similar to
the Local Density Approximation. 
It “sums” all the M2n terms

Long wavelengths: dominant at the onset of the inhomogeneous phase 
Short wavelengths: dominant at the transition to the normal phase. 
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Comparison: CDW case
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Let us see what happens for the CDW anstaz
In this case we have the numerical solution.

M(z) = �e2iqz

Improvement due to the inclusion 
of higher order terms

By construction IGL reproduces the 
homogeneous phase 
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Comparison: kink case
Real kink
M(z) = �
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Comparison of some 1D and 2D modulations 
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Free energy of various phases in the IGL approximation

Why 1D modulations  always win? Where does pairing occur?      
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Qualitative analysis of pairing
We closely inspect the integrand of the  CDW ansatz
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Qualitative analysis of pairing
We closely inspect the integrand of the  CDW ansatz
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2D projection of the Fermi spheres for                     .  
Light region: the energy cost for exciting quasiparticle is small 

µ = 335 MeV

� = 0, Q = 0
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But then why a crystalline phase is realized in color superconductors?



FFLO-phase (quark-quark pairing)
Mismatched two flavor quark matter

For                                   the superconducting phase with Cooper pairs of non-zero total momentum is 
favored
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FFLO-phase (quark-quark pairing)
Mismatched two flavor quark matter

For                                   the superconducting phase with Cooper pairs of non-zero total momentum is 
favored

In weak coupling
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Deforming the Fermi sphere does not cost too much! 
The free energy gain due to pairing overcompensates this cost.



Outlook
The IGL technique can be applied to the Crystalline Color Superconductors
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NJL + GL expansion

Weird non-monotonic 
behavior



AN ASIDE:
GW ECHOES FROM STRANGE 

STARS

MM and F. Tonelli, (2018), arXiv:1805.02278  [gr-qc]  to appear in Phys Rev D 



Recent claim, J. Abedi and N. Afshordi, (2018), arXiv:1803.10454 [gr-qc], of a GW signal in the LIGO 
GW170817 post-merger data at a frequency
 

f
echo

⇡ 72 Hz

with a significance of 4.2  

Interpreted as GW echoes associated to a Planck-scale structure near the black hole horizon.
If confirmed this may indicate quantum effects in GR. 

GW echoes 
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A signal of a ultracompact stellar object, very close to the Buchdahl’s limit compactness  
P. Pani and V. Ferrari, (2018), arXiv:1804.01444 [gr-qc]. 

In arXiv:1805.02278  [gr-qc] we tried to figure out whether a strange star can be ultracompact and 
emit GW echoes

 

Alternative explanation:

�
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Strange stars can have a photon-sphere but they hardly approach the Buchdahl’s limit, thus

! = ⇡/⌧
echo

= 10� 17 kHz



Conclusions

•We have proposed a novel GL expansion, which improves the 
description of the phase transitions to the inhomogeneous phases

• It requires the knowledge of one (semi-)analytical expression of the 
free energy

•We have applied it to the inhomogeneous chiral symmetry breaking

•Aside: GW echoes from strange stars are possible, but only at order 
10 kHz frequency
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Quark model

28

Quarks and gluons are the 
building blocks of hadrons

The theory describing quarks and gluons is Quantum Chromodynamics (QCD): a 
nonabelian  SU(3)  gauge theory.  
Quarks form a triplet in the fundamental representation 
Gluons are the vector gauge bosons associated to the octet adjoint representation                    

neutronproton
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Mn ⇠ 1GeV � mu,d M⇡ ⇠ 135 MeV � mu,d

Q quark flavor (mass in MeV)
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