The improved Ginzburg-Landau technique and GW echoes from strange stars

Massimo Mannarelli INFN-LNGS massimo@lngs.infn.it

S.Carignano, F.Anzuini, O. Benhar, MM Phys.Rev. D97 (2018), 036009 MM and F. Tonelli, (2018), arXiv:1805.02278 [gr-qc] to appear in Phys.Rev. D

CSQCD VII NY, June 12, 2018

Outline

- **Background**
- **Competing condensates**
- $SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_B$ \supset $[U(1)_{e.m.}]$

• **Improved Ginzburg-Landau expansion**

Aside

- **Gravitational wave echoes from strange stars**
- **Conclusions**

BACKGROUND

Symmetries of QCD

Symmetries of the three flavor massless QCD Lagrangian

Symmetries of QCD

Symmetries of the three flavor massless QCD Lagrangian

The ground state may have a lower symmetry because of quark condensates

 $\langle \bar{\psi}\psi \rangle$ **Chiral condensate: Locks chiral rotations**

 $\langle \bar{\psi}\sigma_2\gamma_5 \psi \rangle$ **Pion condensate: Locks chiral rotations and breaks** $U(1)_{e.m.}$

 $\langle \psi C\gamma_5 \psi \rangle$ **Diquark condensate: Breaks the gauge group and may lock chiral rotations**

SOME METHODS

COMPETING CONDENSATES

Fight of condensates

Different kind of pairings

T. Kojo, Y. Hidaka, L. McLerran, R. D. Pisarski, Nucl. Phys. A 843 (2010) 37

Not obvious which of these is energetically favored

Fight of condensates

Different kind of pairings

T. Kojo, Y. Hidaka, L. McLerran, R. D. Pisarski, Nucl. Phys. A 843 (2010) 37

Not obvious which of these is energetically favored

Unfortunately it seems that the favored condensate is somehow model dependent. The appearance of inhomogeneous phases makes the picture even more complicated

Melting the chiral condensate

The chiral condensate becomes disfavored with increasing density

- **It can melt in different ways:**
- **1) By a second order phase transition**
- **2) By a first order phase transition**
- **3) Passing through an inhomogeneous phase**

Melting the chiral condensate

The chiral condensate becomes disfavored with increasing density

It can melt in different ways: 1) By a second order phase transition 2) By a first order phase transition 3) Passing through an inhomogeneous phase

Pauli-Villars regulator Λ **= 757.048 MeV** Coupling constant $G = 6/\Lambda^2$

Melting the chiral condensate

The chiral condensate becomes disfavored with increasing density

- **It can melt in different ways:**
- **1) By a second order phase transition**
- **2) By a first order phase transition**
- **3) Passing through an inhomogeneous phase**

NJL-model analysis CDW ansatz

Pauli-Villars regulator Λ **= 757.048 MeV

Coupling constant G** = $6/\Lambda^2$
 Pauli-Villars regulator Λ = 757.048 MeV Coupling constant $G = 6/\Lambda^2$

variational

parameters

IMPROVED GINZBURG-LANDAU EXPANSION

Standard GL expansion

We focus on inhomogeneous chiral symmetry breaking

$$
\Omega_{\rm GL} = \Omega[0] + \frac{1}{V} \int dx \left[\alpha_2 M^2 + \alpha_4 \left(M^4 + (\nabla M)^2 \right) + \alpha_6 \left(M^6 + 3(\nabla M)^2 M^2 + \frac{1}{2} (\nabla M^2)^2 + \frac{1}{2} (\nabla^2 M)^2 \right) + \alpha_8 \left(14M^4 (\nabla M)^2 - \frac{1}{5} (\nabla M)^4 + \frac{18}{5} M (\nabla^2 M)(\nabla M)^2 + \frac{14}{5} M^2 (\nabla^2 M)^2 + \frac{1}{5} (\nabla^3 M)^2 \right) + \dots \right]
$$

D. Nickel, Phys. Rev. Lett. 103, 072301 (2009) H. Abuki, D. Ishibashi, and K. Suzuki, Phys.Rev. D85, 074002 (2012)

Standard GL expansion

We focus on inhomogeneous chiral symmetry breaking

$$
\Omega_{\rm GL} = \Omega[0] + \frac{1}{V} \int dx \left[\alpha_2 M^2 + \alpha_4 \left(M^4 + (\nabla M)^2 \right) + \alpha_6 \left(M^6 + 3(\nabla M)^2 M^2 + \frac{1}{2} (\nabla M^2)^2 + \frac{1}{2} (\nabla^2 M)^2 \right) + \alpha_8 \left(14M^4 (\nabla M)^2 - \frac{1}{5} (\nabla M)^4 + \frac{18}{5} M (\nabla^2 M)(\nabla M)^2 + \frac{14}{5} M^2 (\nabla^2 M)^2 + \frac{1}{5} (\nabla^3 M)^2 \right) + \dots \right]
$$

D. Nickel, Phys. Rev. Lett. 103, 072301 (2009) H. Abuki, D. Ishibashi, and K. Suzuki, Phys.Rev. D85, 074002 (2012)

Reasoning: terms with the same α_n are equally important. This is correct **close to the Lifshitz point** where both M and ∇M are small. But is not in general true.

Standard GL expansion

We focus on inhomogeneous chiral symmetry breaking

$$
\Omega_{\rm GL} = \Omega[0] + \frac{1}{V} \int dx \left[\alpha_2 M^2 + \alpha_4 \left(M^4 + (\nabla M)^2 \right) + \alpha_6 \left(M^6 + 3(\nabla M)^2 M^2 + \frac{1}{2} (\nabla M^2)^2 + \frac{1}{2} (\nabla^2 M)^2 \right) + \alpha_8 \left(14M^4 (\nabla M)^2 - \frac{1}{5} (\nabla M)^4 + \frac{18}{5} M (\nabla^2 M)(\nabla M)^2 + \frac{14}{5} M^2 (\nabla^2 M)^2 + \frac{1}{5} (\nabla^3 M)^2 \right) + \dots \right]
$$

D. Nickel, Phys. Rev. Lett. 103, 072301 (2009) H. Abuki, D. Ishibashi, and K. Suzuki, Phys.Rev. D85, 074002 (2012)

Reasoning: terms with the same α_n are equally important. This is correct **close to the Lifshitz point** where both M and ∇M are small. But is not in general true.

> What is the "correct expansion" **away from the Lifshitz point**? How to compute the relevant terms? Which are the characteristic scales of fluctuations?

"Universality"

The α_n coefficients are "universal", for the considered system.

They shoul be derived from the microscopic theory. Since in this regime QCD is non perturbative, they depend on the effective model we use.

"Universality"

The α_n coefficients are "universal", for the considered system.

They shoul be derived from the microscopic theory. Since in this regime QCD is non perturbative, they depend on the effective model we use.

Using a NJL model, they do not only depend on μ , but also on the regularization scale Λ

$$
\alpha_2 = \frac{1}{4G} - \frac{N_f N_c}{8\pi^2} \left(3\Lambda^2 \log \left(\frac{4}{3} \right) - 2\mu^2 \right)
$$

\n
$$
\alpha_4 = -\frac{N_f N_c}{16\pi^2} \log \left(\frac{32\mu^2}{3\Lambda^2} \right)
$$

\n
$$
\alpha_6 = \frac{N_f N_c}{96\pi^2} \left(\frac{11}{3\Lambda^2} + \frac{1}{\mu^2} \right)
$$

\n
$$
\alpha_8 = \frac{N_f N_c}{256\pi^2} \left(\frac{1}{2\mu^4} - \frac{85}{27\Lambda^4} \right)
$$

"Universality"

The α_n coefficients are "universal", for the considered system.

They shoul be derived from the microscopic theory. Since in this regime QCD is non perturbative, they depend on the effective model we use.

Using a NJL model, they do not only depend on μ , but also on the regularization scale Λ

$$
\alpha_2 = \frac{1}{4G} - \frac{N_f N_c}{8\pi^2} \left(3\Lambda^2 \log \left(\frac{4}{3} \right) - 2\mu^2 \right)
$$

\n
$$
\alpha_4 = -\frac{N_f N_c}{16\pi^2} \log \left(\frac{32\mu^2}{3\Lambda^2} \right)
$$

\n
$$
\alpha_6 = \frac{N_f N_c}{96\pi^2} \left(\frac{11}{3\Lambda^2} + \frac{1}{\mu^2} \right)
$$

\n
$$
\alpha_8 = \frac{N_f N_c}{256\pi^2} \left(\frac{1}{2\mu^4} - \frac{85}{27\Lambda^4} \right)
$$

Even within the NJL model they are not easy to compute. **Brute force is not very rewarding**.

Idea: scale separation between slow and fast fluctuations + use a simple model to compute some of the coefficients.

Long wavelengths: dominant at the onset of the inhomogeneous phase **Short wavelengths**: dominant at the transition to the normal phase.

Idea: scale separation between slow and fast fluctuations + use a simple model to compute some of the coefficients.

Long wavelengths: dominant at the onset of the inhomogeneous phase **Short wavelengths**: dominant at the transition to the normal phase.

 λ

 $z-\lambda/2$

$$
\Omega_{\text{IGL}} = \frac{1}{V} \int d\mathbf{x} \left[\Omega_{\text{hom}}(\overline{M^2}) + \alpha_6 \left(3(\nabla M)^2 M^2 + \frac{1}{2} (\nabla M^2)^2 \right) \right.
$$

+ $\alpha_8 \left(14M^4 (\nabla M)^2 - \frac{1}{5} (\nabla M)^4 + \frac{18}{5} M (\nabla^2 M)(\nabla M)^2 + \frac{14}{5} M^2 (\nabla^2 M)^2 \right) + \sum_{n \ge 1} \tilde{\alpha}_{2n+2} (\nabla^n M)^2$

$$
\overline{M(z)^2} = \frac{1}{\lambda} \int^{z + \lambda/2} M^2(\xi) d\xi
$$

Idea: scale separation between slow and fast fluctuations + use a simple model to compute some of the coefficients.

Long wavelengths: dominant at the onset of the inhomogeneous phase **Short wavelengths**: dominant at the transition to the normal phase.

$$
\Omega_{\text{IGL}} = \frac{1}{V} \int d\mathbf{x} \left[\Omega_{\text{hom}}(\overline{M^2}) + \alpha_6 \left(3(\nabla M)^2 M^2 + \frac{1}{2} (\nabla M^2)^2 \right) + \alpha_8 \left(14M^4 (\nabla M)^2 \right) + \frac{18}{5} M (\nabla^2 M) (\nabla M)^2 + \frac{14}{5} M^2 (\nabla^2 M)^2 \right) + \sum_{n \ge 1} \tilde{\alpha}_{2n+2} (\nabla^n M)^2 \Bigg]
$$

$$
\overline{M(z)^2} = \frac{1}{\lambda} \int_{z - \lambda/2}^{z + \lambda/2} M^2(\xi) d\xi
$$

Captures long-wavelength oscillations similar to the Local Density Approximation. It "sums" all the M2n terms

Idea: scale separation between slow and fast fluctuations + use a simple model to compute some of the coefficients.

Long wavelengths: dominant at the onset of the inhomogeneous phase **Short wavelengths**: dominant at the transition to the normal phase.

$$
\Omega_{\text{IGL}} = \frac{1}{V} \int dx \left(\Omega_{\text{hom}}(\overline{M^2}) + \alpha_6 \left(3(\nabla M)^2 M^2 + \frac{1}{2} (\nabla M^2)^2 \right) + \alpha_8 \left(14M^4 (\nabla M)^2 \right) + \frac{14}{5} M (\nabla^2 M)(\nabla M)^2 + \frac{14}{5} M^2 (\nabla^2 M)^2 \right) + \sum_{n \ge 4} \tilde{\alpha}_{2n+2} (\nabla^n M)^3
$$
\n
$$
\overline{M(z)^2} = \frac{1}{\lambda} \int_{z - \lambda/2}^{z + \lambda/2} M^2(\xi) d\xi
$$
\nCaptures short-wavelength oscillations by larger number of gradients.

Captures long-wavelength oscillations similar to the Local Density Approximation. It "sums" all the M2n terms

We compute the $\tilde{\alpha}_{2n+2}$ using a simple model

We must have an analytical or semi-analytical expression of the free energy in one simple case:

 $M(z) = \Delta e^{2iqz}$

Double expansion

We compute the $\tilde{\alpha}_{2n+2}$ using a simple model

We must have an analytical or semi-analytical expression of the free energy in one simple case:

$$
M(z) = \Delta e^{2iqz}
$$

Double expansion

In powers of Δ $\Omega = \Omega_0 + \Omega_2 \Delta^2 + \Omega_4 \Delta^4 + \dots$

We compute the $\tilde{\alpha}_{2n+2}$ using a simple model

We must have an analytical or semi-analytical expression of the free energy in one simple case:

$$
M(z) = \Delta e^{2iqz}
$$

Double expansion

In powers of Δ $\Omega = \Omega_0 + \Omega_2 \Delta^2 + \Omega_4 \Delta^4 + \dots$

In powers of q/μ

$$
\Omega_2(q) = \frac{N_f N_c}{4\pi^2} \mu^2 \left[-\log\left(\frac{32\mu^2}{3\Lambda^2}\right) \left(\frac{q}{\mu}\right)^2 + \left(\frac{1}{3} + \frac{11\mu^2}{9\Lambda^2}\right) \left(\frac{q}{\mu}\right)^4 + \left(\frac{1}{10} - \frac{17\mu^4}{27\Lambda^4}\right) \left(\frac{q}{\mu}\right)^6 + \left(\frac{1}{21} + \frac{230\mu^6}{567\Lambda^6}\right) \left(\frac{q}{\mu}\right)^8 + \dots \right]
$$

We compute the $\tilde{\alpha}_{2n+2}$ using a simple model

We must have an analytical or semi-analytical expression of the free energy in one simple case:

$$
M(z) = \Delta e^{2iqz}
$$

Double expansion

In powers of Δ $\Omega = \Omega_0 + \Omega_2 \Delta^2 + \Omega_4 \Delta^4 + \dots$

In powers of q/μ

$$
\Omega_2(q) = \frac{N_f N_c}{4\pi^2} \mu^2 \left[-\log\left(\frac{32\mu^2}{3\Lambda^2}\right) \left(\frac{q}{\mu}\right)^2 + \left(\frac{1}{3} + \frac{11\mu^2}{9\Lambda^2}\right) \left(\frac{q}{\mu}\right)^4 + \left(\frac{1}{10} - \frac{17\mu^4}{27\Lambda^4}\right) \left(\frac{q}{\mu}\right)^6 + \left(\frac{1}{21} + \frac{230\mu^6}{567\Lambda^6}\right) \left(\frac{q}{\mu}\right)^8 + \dots \right]
$$

 $\tilde{\alpha}_{10} =$ $N_f N_c$ $1024\pi^2$ $\binom{230}{ }$ $\frac{200}{567\Lambda^6} +$ 1 $21\mu^6$ ◆ Therefore $\tilde{\alpha}_{10} = \frac{N_f N_c}{1094 \cdot 2} \left(\frac{200}{56746} + \frac{1}{91 \cdot 6} \right)$ and we can in principle extract more terms

Comparison: CDW case

Let us see what happens for the CDW anstaz $M(z) = \Delta e^{2iqz}$ In this case we have the numerical solution.

Comparison: kink case

Real kink $M(z) = \Delta \sqrt{\nu} \operatorname{sn}(\Delta z | \nu)$

Comparison: kink case

Comparison: kink case

Comparison of some 1D and 2D modulations

Free energy of various phases in the IGL approximation

Why 1D modulations always win? Where does pairing occur?

We closely inspect the integrand of the CDW ansatz

$$
\Omega_{\rm CDW} = -\frac{N_f N_c}{4\pi^2} \int_0^\infty dp_\perp p_\perp \int_{-\infty}^\infty dp_z \sum_{\epsilon=\pm} \left[E_{PV}^\epsilon + (\mu - E^\epsilon) \theta (\mu - E^\epsilon) \right] + \frac{\Delta^2}{4G}
$$

We closely inspect the integrand of the CDW ansatz

$$
\Omega_{\rm CDW} = -\frac{N_f N_c}{4\pi^2} \int_0^\infty dp_\perp p_\perp \int_{-\infty}^\infty dp_z \sum_{\epsilon=\pm} \left[E_{PV}^\epsilon + (\mu - E^\epsilon) \theta (\mu - E^\epsilon) \right] + \frac{\Delta^2}{4G}
$$

2D projection of the Fermi spheres for $\mu = 335$ MeV. **Light region**: the energy cost for exciting quasiparticle is small

 $\Delta = 0, Q = 0$

2 coincident Fermi spheres

We closely inspect the integrand of the CDW ansatz

$$
\Omega_{\rm CDW} = -\frac{N_f N_c}{4\pi^2} \int_0^\infty dp_\perp p_\perp \int_{-\infty}^\infty dp_z \sum_{\epsilon=\pm} \left[E_{PV}^\epsilon + (\mu - E^\epsilon) \theta (\mu - E^\epsilon) \right] + \frac{\Delta^2}{4G}
$$

2D projection of the Fermi spheres for $\mu = 335$ MeV. **Light region**: the energy cost for exciting quasiparticle is small

> $\Delta = 0, Q = 0$ $\Delta = 0, Q = 241 \text{ MeV}$

We closely inspect the integrand of the CDW ansatz

$$
\Omega_{\rm CDW} = -\frac{N_f N_c}{4\pi^2} \int_0^\infty dp_\perp p_\perp \int_{-\infty}^\infty dp_z \sum_{\epsilon=\pm} \left[E_{PV}^\epsilon + (\mu - E^\epsilon) \theta (\mu - E^\epsilon) \right] + \frac{\Delta^2}{4G}
$$

2D projection of the Fermi spheres for $\mu = 335$ MeV. **Light region**: the energy cost for exciting quasiparticle is small

$$
\Delta = 0, Q = 0 \qquad \qquad \Delta = 0, Q = 241 \text{ MeV} \qquad \qquad \Delta =
$$

$$
\Delta = 44 \text{ MeV}, Q = 241 \text{ MeV}
$$

The Fermi spheres are strongly modified. As far as Q is large, only 1D modulation can be favored

600 400 200 p₁ (MeV) -200 -400 -600 -400 -200 200 400 600 -600 0

 $\Delta = 44 \text{ MeV}, Q = 241 \text{ MeV}$

 p_z (MeV)

The Fermi spheres are strongly modified. As far as Q is large, only 1D modulation can be favored

 $\Delta = 44$ MeV, $Q = 241$ MeV

For example: pairing

The Fermi spheres are strongly modified. As far as Q is large, only 1D modulation can be favored

600 **For example: pairing** 400 **quarks here** 200 p₁ (MeV) -200 -400 -600 -200 400 600 -600 -400 0 200 p_z (MeV)

 $\Delta = 44$ MeV, $Q = 241$ MeV

The Fermi spheres are strongly modified. As far as Q is large, only 1D modulation can be favored

 $\Delta = 44 \text{ MeV}, Q = 241 \text{ MeV}$

The Fermi spheres are strongly modified. As far as Q is large, only 1D modulation can be favored

 $\Delta = 44 \text{ MeV}, Q = 241 \text{ MeV}$

 $\Delta = 44 \text{ MeV}, Q = 241 \text{ MeV}$

The Fermi spheres are strongly modified. As far as Q is large, only 1D modulation can be favored

600 **For example: pairing** 400 **quarks here** 200 **with** p₁ (MeV) **quarks here** -200 **requires a large deformation of the Fermi sphere** -400 -600 -200 -400 200 400 600 -600 0 p_z (MeV)

There seems no way to have a crystalline phase.

 $\Delta = 44 \text{ MeV}, Q = 241 \text{ MeV}$

The Fermi spheres are strongly modified. As far as Q is large, only 1D modulation can be favored

600 **For example: pairing** 400 **quarks here** 200 **with** p₁ (MeV) **quarks here** -200 **requires a large deformation of the Fermi sphere** -400 -600 -200 600 -400 200 400 -600 0 p_z (MeV)

There seems no way to have a crystalline phase.

But then why a crystalline phase is realized in color superconductors?

FFLO-phase (quark-quark pairing)

Mismatched two flavor quark matter

For $\delta \mu_1 < \delta \mu < \delta \mu_2$ the superconducting phase with Cooper pairs of non-zero total momentum is **favored**

FFLO-phase (quark-quark pairing)

Mismatched two flavor quark matter

For $\delta \mu_1 < \delta \mu < \delta \mu_2$ the superconducting phase with Cooper pairs of non-zero total momentum is **favored**

In weak coupling $\delta \mu_1 \simeq$ Δ_0 $\delta\mu_2 \simeq 0.75 \, \Delta_0$

FFLO-phase (quark-quark pairing)

Mismatched two flavor quark matter

For $\delta \mu_1 < \delta \mu < \delta \mu_2$ the superconducting phase with Cooper pairs of non-zero total momentum is **favored**

In weak coupling
\n
$$
\delta\mu_1 \simeq \frac{\Delta_0}{\sqrt{2}} \qquad \delta\mu_2 \simeq 0.75 \,\Delta_0
$$

Deforming the Fermi sphere does not cost too much! The free energy gain due to pairing overcompensates this co

Outlook

The IGL technique can be applied to the Crystalline Color Superconductors

NJL + GL expansion

Rajagopal and Sharma Phys.Rev. D74 (2006) 094019

AN ASIDE: GW ECHOES FROM STRANGE STARS

MM and F. Tonelli, (2018), arXiv:1805.02278 [gr-qc] to appear in Phys Rev D

GW echoes

Recent claim, J. Abedi and N. Afshordi, (2018), arXiv:1803.10454 [gr-qc], of a GW signal in the LIGO GW170817 post-merger data at a frequency

 $f_{\text{echo}} \approx 72 \text{ Hz}$

with a significance of 4.2 σ

Interpreted as GW echoes associated to a Planck-scale structure near the black hole horizon. If confirmed this may indicate quantum effects in GR.

GW echoes

Recent claim, J. Abedi and N. Afshordi, (2018), arXiv:1803.10454 [gr-qc], of a GW signal in the LIGO GW170817 post-merger data at a frequency

 $f_{\text{echo}} \approx 72 \text{ Hz}$

with a significance of 4.2 σ

Interpreted as GW echoes associated to a Planck-scale structure near the black hole horizon. If confirmed this may indicate quantum effects in GR.

Alternative explanation:

A signal of a ultracompact stellar object, very close to the Buchdahl's limit compactness P. Pani and V. Ferrari, (2018), arXiv:1804.01444 [gr-qc].

In arXiv:1805.02278 [gr-qc] we tried to figure out whether a strange star can be ultracompact and emit GW echoes

Strange ultracompact stars

 $p = c_s^2(\epsilon - 4B)$ we take $c_s = 1$ and $B_1 = (145 \text{ MeV})^4$, $B_2 = (185 \text{ MeV})^4$

Strange ultracompact stars

 $p = c_s^2(\epsilon - 4B)$ we take $c_s = 1$ and $B_1 = (145 \text{ MeV})^4$, $B_2 = (185 \text{ MeV})^4$

Strange stars can have a photon-sphere but they hardly approach the Buchdahl's limit, thus

$$
\omega = \pi / \tau_{\text{echo}} = 10 - 17 \text{ kHz}
$$

Conclusions

- **We have proposed a novel GL expansion, which improves the description of the phase transitions to the inhomogeneous phases**
- **It requires the knowledge of one (semi-)analytical expression of the free energy**
- **We have applied it to the inhomogeneous chiral symmetry breaking**
- **Aside: GW echoes from strange stars are possible, but only at order 10 kHz frequency**

Increasing baryonic density

Quark model

 $M_n \sim 1 \text{GeV} \gg m_{u,d}$ *M*^{π} ~ 135 MeV $\gg m_{u,d}$

Quarks and gluons are the building blocks of hadrons

The theory describing quarks and gluons is **Quantum Chromodynamics (QCD)**: a nonabelian SU(3) gauge theory. **Quarks form a triplet in the fundamental representation Gluons are the vector gauge bosons associated to the octet adjoint representation**