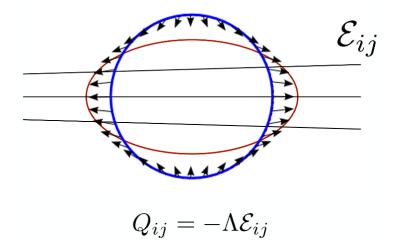
Tidal Deformability constraints of neutron stars and hybrid quark stars

Tianqi Zhao

Stony Brook University

CSQCD VII, 2018

Tianqi Zhao (Stony Brook University) Tidal Deformability constraints of neutron sta



CSQCD VII, 2018 2 / 20

3

イロト イ団ト イヨト イヨト

Tidal deformability(Newtonian)

Tidal field potential and quadruple moment in Newtonian physics are,

$$\Phi_{tidal} = \frac{1}{2} \varepsilon_{ij} x^i x^j \tag{1}$$

$$Q_{ij} = \int d^3 x \delta \rho(x_i x_j - \frac{1}{3} \delta_{ij})$$
 (2)

Quadruple moment is induced by tidal field linearly,

$$Q_{ij} = -\lambda \varepsilon_{ij}$$
 (3)

where λ is tidal deformability with a unit of (mass)(length)²/(time)². • Two dimensionless parameters are defined from λ ,

$$\Lambda = \lambda M^{-5} \quad \text{dimensionless tidal deformability} \tag{4}$$

$$k_2 = \frac{3}{2} \lambda R^{-5} \quad \text{tidal Love number} \tag{5}$$

where c = G = 1.

Tidal deformability(GR generized)

• Total gravitational potential in Newtonian physics are,

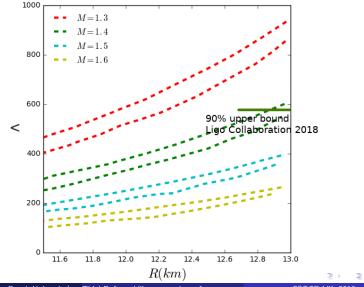
$$\Phi = \frac{1}{2} \varepsilon_{ij} x^{i} x^{j} - \frac{M}{r} - \frac{3}{2} \frac{Q_{ij} x^{i} x^{j}}{r^{5}}$$
(6)

 We know general relativity reduce to Newtonian gravity at weak(far) field. And tt component of metric plays the exact role of Newtonian potential. Thus is should be expanded in powers of r to match Newtonian definition of quadruple moment and tidal deformability.

$$-\frac{1+g_{00}}{2} = \frac{1}{2}\varepsilon_{ij}x^{i}x^{j} - \frac{M}{r} - \frac{3}{2}\frac{Q_{ij}x^{i}x^{j}}{r^{5}} + \sum C_{n}r^{n} \quad (n \neq 2, -1, -3) \quad (7)$$

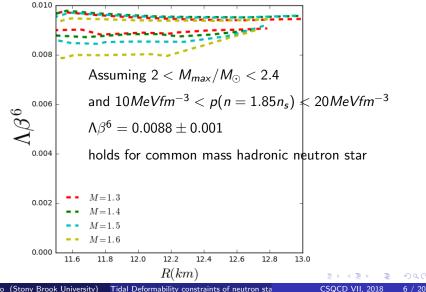
g₀₀ can be solved by introducing a linear Y^{m=0}_{l=2}(θ, φ) perturbation on spherical symmetric metric(TOV metric). And the ratio between its (n=2) order and (n=-3) order coefficient defines tidal deformability.

Tidal deformability of hadronic NS



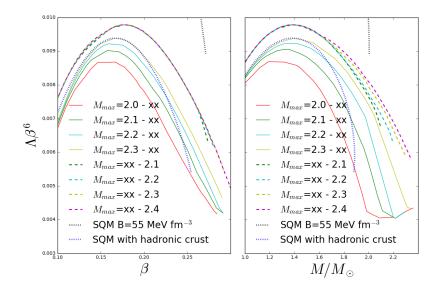
Tianqi Zhao (Stony Brook University) Tidal Deformability constraints of neutron sta

Tidal deformability of hadronic NS



Tiangi Zhao (Stony Brook University) Tidal Deformability constraints of neutron sta

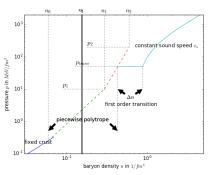
Tidal deformability of hadronic NS



CSQCD VII, 2018 7 / 20

Hybrid star with first order phase transition

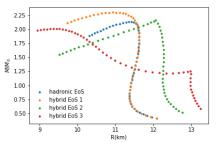
- BPS as fixed crust EoS up to $n_0 \approx n_s/2.7$
- Three piecewise polytropic EoS devided by n₁ = 1.85n_s, n₂ = 3.74n_s (J.S. Read 2008)
- Constant sound speed(CSS) is used for quark core.
- A first order transition is assumed to happened between n_s and $3.74n_s$, or $p_{trans} < 250 MeV/fm^3$. Chemical equilibrium is assumed at boundary,



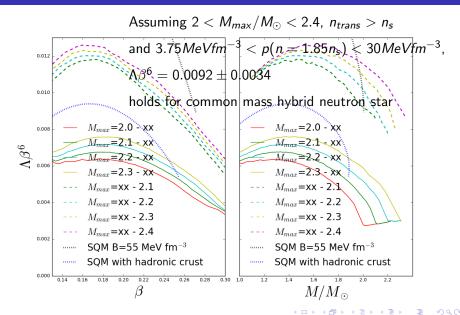
 $\rho_{hardron} = \rho_{quark}, \ \mu_{hardron} = \mu_{quark} \tag{8}$ $\epsilon(p) = \begin{cases} \epsilon_{poly}(p) & \text{if } p < p_{trans} \\ \epsilon_{poly}(p_{trans}) + \Delta \epsilon + \frac{p - p_{trans}}{c^2} & \text{if } p < p_{trans} \end{cases} \tag{9}$

Hybrid star with first order phase transition

- $p_1 = p(n_1)$ is closely related with radius of a typical neutron star, and is constrained by neutron matter calculation.
- $p_2 = p(n_2)$ define stiffness below transition, bounded by causality at transition.
- Sound speed c_s² affect maximum mass of hybrid star.
- Energy discontinuity $\Delta \varepsilon > 0$ (stability), is bounded by requiring $M_{max} > 2.01 M_{\odot}$.

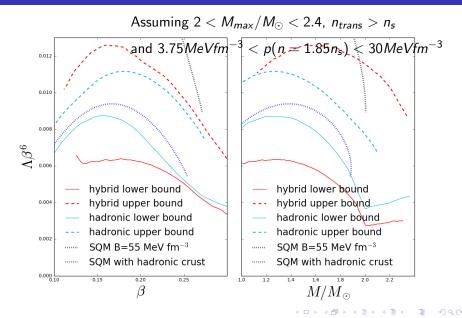


Tidal Deformability of Hybrid NS



CSQCD VII, 2018 10 / 20

Tidal Deformability of Hybrid NS



Tianqi Zhao (Stony Brook University) Tidal Deformability constraints of neutron sta

Tidal deformability in binary merger GW waveform

- Oscillating Quadruple moments of neutron star due to excitation of periodic tidal fields contributes to phase shift in GW form.
- Quadruple oscillating contribute to GW radiation reaction,

$$\dot{E}(\omega) = -\frac{1}{5} < \ddot{Q}_{ij}^{T} \ddot{Q}_{ij}^{T} > = -\frac{32}{5} M^{4/3} \mu^2 \omega^{10/3} [1 + g(\omega)]$$
(10)

- By evaluating stable orbit, contribution of quadruple oscillating to total energy of the binary can be calculated, $E(\omega) = -M^{1/3}\omega^{-2/3}[1 + f(\omega)] \quad (11)$
- Using formula $\frac{d^2\Phi}{d\omega^2} = 2(\frac{dE}{d\omega})/\dot{E}$, tidal phase correction can be derived,

$$\delta \Phi = -\frac{9}{16} \frac{\omega^{5/3}}{\mu M^{7/3}} \left[\left(\frac{12m_2 + m_1}{m_1} \lambda_1 + \frac{12m_1 + m_2}{m_2} \lambda_2 \right] (12)^{\text{Flanagan} + 2008} \right]$$

0

10

20

30

t_{ret} (ms)

40

CSQCD VII, 2018

50

60

12 / 20

Binary tidal deformability

 At leading order, phase shift of GW is proportional to the binary tidal deformability,

$$\bar{\Lambda} = \frac{16}{13} \frac{(12q+1)\Lambda_1 + (12+q)q^4\Lambda_2}{(1+q)^5}$$
(13)

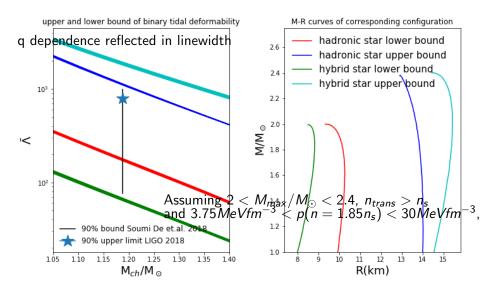
where $q = m_2/m_1 < 1$.

- Statistics are required in order to make any conclusion for binary tidal deformability. Thus, prior distribution of $\tilde{\Lambda}, \Lambda_1, \Lambda_2$ is important.
- We set up bounds of $\tilde{\Lambda}$ and Λ_2/Λ_1 as a function of chirp mass M_{ch} and q, in the scenario of hadronic star and hybrid star respectively.

$$\tilde{\Lambda}_{lower}(M_{ch},q) < \tilde{\Lambda} < ilde{\Lambda}_{upper}(M_{ch},q)$$
 (14)

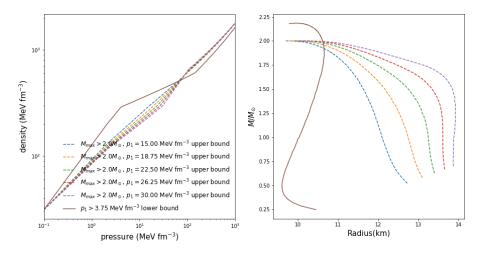
 $(\Lambda_2/\Lambda_1)_{lower}(M_{ch},q) < (\Lambda_2/\Lambda_1) < (\Lambda_2/\Lambda_1)_{upper}(M_{ch},q)$ (15)

Bounds of binary tidal deformability $\tilde{\Lambda}$



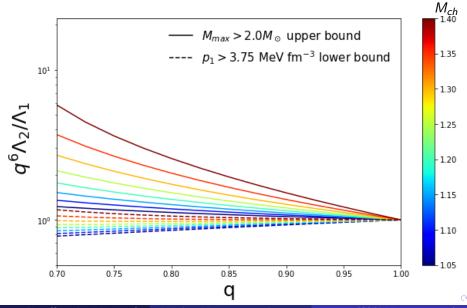
CSQCD VII, 2018 14 / 20

EoS and M-R curves for hadronic bounds of Λ_2/Λ_1



Tiangi Zhao (Stony Brook University) Tidal Deformability constraints of neutron sta CSQCD VII, 2018 15 / 20

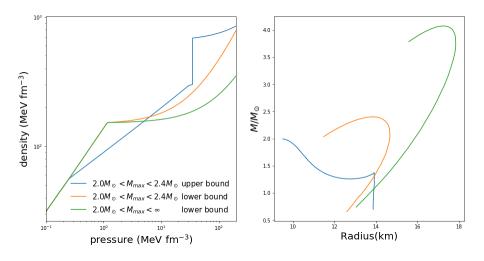
Hadronic bounds of binary tidal deformability ratio $ilde{\lambda}_2/ ilde{\lambda}_1$



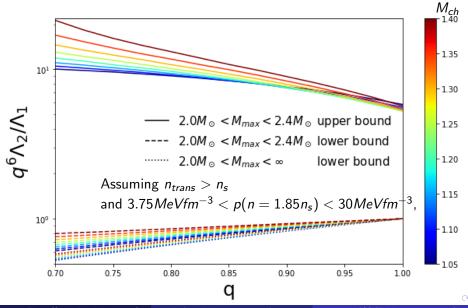
Tianqi Zhao (Stony Brook University) Tidal Deformability constraints of neutron sta

CSQCD VII, 2018 16 / 20

Hybrid star bounds of binary tidal deformability ratio $ilde{\lambda}_2/ ilde{\lambda}_1$



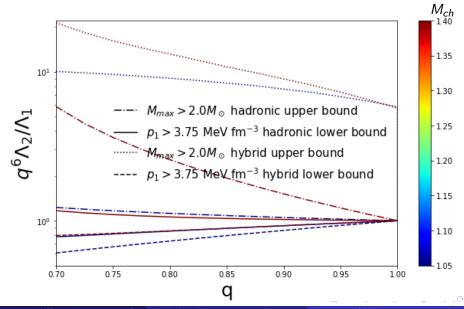
Hybrid star bounds of binary tidal deformability ratio $ilde{\lambda}_2/ ilde{\lambda}_1$



Tianqi Zhao (Stony Brook University) Tidal Deformability constraints of neutron sta

CSQCD VII, 2018 18 / 20

Bounds of binary tidal deformability ratio $\tilde{\lambda}_2/\tilde{\lambda}_1$



Tianqi Zhao (Stony Brook University) Tidal Deformability constraints of neutron sta

CSQCD VII, 2018 19 / 20

- Tidal deformability is a measure of compactness.
- Tidal deformability-compactness relation is broaden when hybrid neutron star was taken into account.
- Binary tidal deformability is a 'average' tidal deformability of the two star with more weight on the massive one. It appear as perturbation of phase shift in GW observation.
- Together with mass knowledge, tidal deformability will provide us radius of neutron star, eventually the information of EoS around $n = 1 2n_s$