Supernova explosions of massive blue-supergiant stars

triggered by the QCD phase transition

on the origin of massive neutron stars

From protoneutron stars to hybrid stars Exploring the QCD phase transition in core collapse supernovae

Tobias Fischer

Department of Physics, University Basel, Switzerland

CSQCD II, May 2009

PRL 102, 081101 (2009)

PHYSICAL REVIEW LETTERS

week ending 27 FEBRUARY 2009

Signals of the QCD Phase Transition in Core-Collapse Supernovae

I. Sagert,¹ T. Fischer,³ M. Hempel,¹ G. Pagliara,² J. Schaffner-Bielich,² A. Mezzacappa,⁴ F.-K. Thielemann,³ and M. Liebendörfer³

¹Institut für Theoretische Physik, Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany ²Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 16, 69120 Heidelberg, Germany ³Department of Physics, University of Basel, Klingelbergstr. 82, 4056 Basel, Switzerland ⁴Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA (Received 12 August 2008; published 26 February 2009)

We explore the implications of the QCD phase transition during the postbounce evolution of corecollapse supernovae. Using the MIT bag model for the description of quark matter, we model phase transitions that occur during the early postbounce evolution. This stage of the evolution can be simulated with general relativistic three-flavor Boltzmann neutrino transport. The phase transition produces a second shock wave that triggers a delayed supernova explosion.

$$\rho_{\text{transition}} \simeq \rho_{\text{sat}}, \quad M_{\text{max}} < 2 \,\,\text{M}_{\odot}$$

Inaccessible in heavy-ion collisions

ApJ 821:38, 45 (2016)

 $D_0 = 1 \text{ GeV } \text{fm}^{-1}$

NPA 536, 669 (1992) PRD 96, 056024 (2017)

(see talk by Aleksandr Nikolaev)

medium dependence

repulsive vector interaction:

$$\mu^* = \mu - a \rho - \mathcal{O}(\rho^3)$$
A&A 577, 40 (2015)
ApJ 810, 134 (205)

$$D(\rho) = D_0 \Phi(\rho)$$

$$\Phi(\rho) = \exp\left\{-\alpha(\rho - \rho_0)^2\right\}$$

repulsive vector interaction:

$$\mu^* = \mu - a\,\rho - \mathcal{O}\left(\rho^3\right)$$

ArXiv astro-ph.HE/1712.08778

ArXiv astro-ph.HE/1712.08778

ArXiv astro-ph.HE/1712.08778

Novel road to explosions of very massive stars $\gtrsim 40-50~{\rm M}_{\odot}$

"The progenitor was so bright that it probably belonged to a class of stars called Luminous Blue Variables (LBVs)"

remnants: massive neutron stars $\sim 2~M_{\odot}$

r process nucleosynthesis

Wroclaw Supernova Project

CINS

In collaboration with: N. U. Bastian D. Blaschke M. Cierniak T. Klähn S. Typel M. R. Wu